Problem 11

Using (4.6), give a proof of the preliminary test. Hint: $S_{n}-S_{n-1}=a_{n}$.

Solution

Consider a generic infinite series.

$$
\sum_{i=0}^{\infty} a_{i}
$$

The partial sum is

$$
S_{n}=\sum_{i=0}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}+a_{n}=S_{n-1}+a_{n} .
$$

Bring S_{n-1} to the left side.

$$
S_{n}-S_{n-1}=a_{n}
$$

Take the limit of both sides as $n \rightarrow \infty$.

$$
\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)=\lim _{n \rightarrow \infty} a_{n}
$$

Assume that the infinite series converges and use equation (4.6).

$$
S-S=\lim _{n \rightarrow \infty} a_{n}
$$

Evaluate the left side.

$$
\begin{equation*}
0=\lim _{n \rightarrow \infty} a_{n} \tag{1}
\end{equation*}
$$

If

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0,
$$

then equation (1) is false, meaning the assumption that the infinite series converges is false.

$$
\lim _{n \rightarrow \infty} S_{n} \neq S
$$

Therefore, if

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

the infinite series diverges.

